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Abstract

This report summarizes research into the application of system identification techniques
to simulation model abstraction. System identification produces simplified
mathematical models that approximate the dynamic behaviors of the underlying
stochastic simulations. Four state-space system identification techniques were examined:
Canonical State-Space, Compartmental Models, Maximum Entropy, and Hidden Markov
Models (HMM). Two stochastic simulation models were identified: the “Attrition
Simulation”, a simulation of two opposing forces, each operating with multiple weapon
system types; and the “Mission Simulation”, a simulation of a squadron of aircraft
performing battlefield air interdiction. The system identification techniques were
evaluated and compared under a variety of scenarios on how well they replicate the
distributions of the simulation states and decision outputs. Encouraging results were
achieved by the HMM technique applied to the Attrition Simulation - and by the
Maximum Entropy technique applied to the Mission Simulation. This report also
discusses the run-time performance of the algorithms, the development of suitable model
structures, and implications for future efforts.

Keywords: model abstraction, system identification, state-space models, multi-resolution
modeling, simulation
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Introduction
Motivation

Model abstraction techniques are used to construct low-resolution approximations of
higher-resolution models. In this research, the high-resolution models are stochastic,
discrete-event simulations of military combat systems. The research is motivated by the
hypothesis that model abstraction is a potential enabling technology for the larger goal of
multi-resolution modeling.

In military simulations, multi-resolution modeling is often described with respect to a
hierarchy of models similar to Figure 1. The idea is to execute a system model

Mission/Battle

/ Engagement
/ Engineering

Figure 1. A Hierarchy of Military Simulation Models

operating at a given level of the model hierarchy, which is itself comprised of
components defined at the next lower level. The strategy reduces simulation
development and support costs through gains in software reuse. A key to practical
application is the ability to substitute low-resolution, approximate versions of
components for high-resolution versions. This provides gains in run-time efficiency and
further reduction of support costs, but at the expense of some acceptable loss of model
accuracy.

Even as computers become faster there will be a continuing need for low-resolutions
models, high-resolution models, and multi-resolution modeling. Low-resolution models
can be useful for:

making initial cuts at problems,

"comprehending the whole" without getting lost in detail,
reasoning about issues quickly or under time pressure,
analyzing choices in the presence of uncertainty,

using low-resolution information, and

¢ calibrating higher-resolution models.




On the other hand, high-resolution models are useful for:

¢ understanding underlying phenomena,

e representing and reasoning about detailed knowledge,

e simulating "reality" and create virtual laboratories for studying phenomena that
cannot be studied in any other way (e.g., a range of possible battles and wars),

e using high-resolution information, which is sometimes quite tangible (e.g., weapon
performance), and

e calibrating lower-resolution models

(From Davis and Zeigler, 1997).

There are also strong motivations for having the ability to model at multiple levels of
resolution, chief among them being speed and efficiency. By avoiding high levels of
resolution across a// model functions we can address large and complex scenarios while
still being able to economize on resources needed for computation (hardware), data
collection, model setup, validation, and analysis. Another historical motivation has been
the desire to connect existing legacy models that operate at different levels of resolution.

Context

There are many forms of model abstraction. Figure 2 shows one useful taxonomy.

Abstraction
Structural Behavioral
Data Model Static Dynamic
Homogenous Heterogeneous

Figure 2. Abstraction Taxonomy
(from Lee and Fishwick, 1996)

Structural abstraction focuses on model abstraction levels and model types. Data
abstraction uses statistical, mathematical, relational, or symbolic substitution methods to
approximate time-dependent information (input, outputs, or parameters). Model




abstractions focus on the composition of model components and mappings between
components residing at different levels. Behavioral abstraction replaces a system
component with a simplified version that approximates the behavior of the original
component. Static behavioral approaches are time independent, and capture only a
steady state output value. Dynamic behavioral approaches associate input/output
trajectories over time. System identification, the subject of this report, is a set of
techniques that produce the latter - dynamic systems behavioral abstractions.

Behavioral abstractions are sometimes thought of as “black box” modeling because they
are more concerned with the input-output characteristics of the original model than with
its internal structure. However, in this research we use techniques that might more
accurately be called “gray box” approaches. That is, we will also be concerned with the
structural components of the abstraction. These components can be shown to be
morphisms (Zeigler, 1998) of the components in the simulation model. Consequently,
our approach combines aspects of both structural and behavioral abstraction.

System identification techniques are widely used in biomathematics, medicine, control
system design, signal processing, speech recognition, and other fields to develop models
of dynamical systems. There are many types of dynamical systems, e.g.:
discrete/continuous time or state space, linear/nonlinear input-state-output mappings and
dynamics, stochastic/deterministic/chaotic evolution, time varying/invariant state
transition intensities, lumped/distributed parameters, centralized/decentralized control,
etc. A correspondingly vast number of system identification techniques have been
developed to handle these different characteristics (Ljung, 1987).

Choice of System Identification Techniques

Selecting the appropriate system identification technique(s) involves making trade-offs
among accuracy, performance, the quantity of data available, and the quality of the data.
First of all, the simulation models we wish to identify are stochastic; therefore, we want
techniques that can handle random and noisy data. Second, we seek techniques that do
not require excessive amounts of input/output data for the identification process. Such
data may not be available within practical limits of time and cost. To maximize
usability, the technique should be general enough to handle multiple inputs and multiple
outputs ("MIMO" systems). Lastly, the resulting model should be compact and efficient
from both a computational and a conceptual point of view.

Simultaneous pursuit of these objectives severely limits the set of possible techniques.
We have selected a set of four, somewhat nontraditional, system identification techniques
capable of producing linear time invariant (LTI) state-space models of the following
general form:

x(t) = Ax(t-1) + Bu(t) + &(1)
y(t) = Cx(t) + e(t)




where ¢ is the discrete time index, y is an M element (noisy) observation vector, x is an N
element state vector (the number of entities in each element), u is an R element input
vector, € is an N element system noise vector, e is an M element observation noise
vector, 4 is an N x N state transition matrix, B is an N x R input matrix, and C is an M x
N observation matrix. The techniques examined in this research are:

Canonical State Space
Compartmental Model
Maximum Entropy

Hidden Markov Model (HMM)

Each is described in detail within this report.




Simulation Model Development

In this research we use specially developed simulation models as sources of system

identification data. We use these, rather than using existing military simulation models,
to provide a better assessment of the overall utility of the proposed system identification
algorithms. The specific advantages include:

e greater transparency
®

[ ]

e case of use

e generality

greater control over structural elements
greater control over dynamics (transition probabilities, event times, variance, etc.)

At the same time we want models that portray typical elements of military simulations
with sufficient detail to draw initial conclusions on the general applicability of the
proposed algorithms.

Model Scope

In general, military simulation models span a wide range of domain scope and resolution.
Table 1 below summarizes major model categories and their characteristics.

Level of Scope Level of Time Span Outputs IHustrative Examples
Model Detail Uses
Theater/ Joint and Highly Days to weeks | Campaign Evaluation of | CEM,
Campaign combined aggregated dynamics, force TACWAR,
(e.g., force structures, THUNDER,
draw-downs, strategies, JICM
movement) balances;
wargaming
Mission/ Multi- Moderate Minutes to Mission Evaluation of | Eagle, Vector
Battle platform aggregation hours effectiveness | alternative II Suppressor,
with some (eg, force EADSIM,
entities exchange employment NSS
ratios) concepts,
forces,
systems;
wargaming
Engagement One to a few Individual Seconds to System Evaluation of | JANUS,
friendly entities, some | minutes effectiveness alternative Brawler,
entities detailed (eg tactics and ESAMS
subsystems probability of | systems;
kill) training
Engineering Single weapon | Detailed down | Sub-seconds Measures of Design and Many
systems and to piece parts, | to seconds system evaluation of | throughout
components plus physics performance systems and R&D Centers
subsystems;
test support

From Davis and Bigelow, 1998.

Table 1. INlustrative Scope and Resolution of DoD Models
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Two benchmark simulation models were developed for this research. The first is the
“Two-Sided Stochastic Attrition Simulation” (a.k.a. Attrition Simulation). The second is
the “CAS/BAI (Close Air Support/Battlefield Air Interdiction) Mission Simulation”
(a.k.a. Mission Simulation). Within the framework provided above, our benchmark
models could be considered as simplified versions of “Mission/Battle” models or
“Theater/Campaign” models.! The simulation models are discussed in detail below.

Model 1 - Attrition Simulation

Background

Attrition simulations or attrition equations define the combat dynamics of combat
simulation models. They are used to model the duration, lethality, and victor of a given
combat scenario. The attrition simulation model developed for this research was inspired
in part by Ancker (1995), who proposed two axioms for a “theory of combat™ 1) “all
combat is a hierarchical network of firefights”, and especially 2) “a firefight is a
terminating stochastic target attrition process on a discrete state-space with a
continuous time parameter.” The “Attrition Simulation” was constructed to fit Ancker’s
second axiom.

A reading of the available literature on existing combat simulations (see, for example,
Bracken, Kress. and Rosenthal [eds.], 1995) indicates that this second axiom is observed
by the attrition logic of a number of existing combat simulation models. However, it
should also be noted that many other combat simulations use deterministic methods or a
process mean value algorithm only. A common approach within this category is to use
the classic Lanchester differential equations -

dxl

dy,

= A

@ = "B

to describe attrition dynamics. Here x,= (X, Xat, .. Xme) a0d ¥¢ = (Y1, Y2t» --- Ynr) TEpPrESent
the vector quantities of weapon systems by type on opposing sides, while A = [A;] and B
= [Bj] are the Lanchester coefficient matrices defining the rate at which y systems
destroy x systems and vice versa. There has been some recent progress in aggregating
models based on these dynamics (Fowler,1999; Hillestad and Juncosa, 1995). Fowler
further demonstrates how his technique can be applied to the final output of a single
simulation instance. However, it is well known that these Lanchester relations are
deficient in several respects: 1) they ignore combat stochasticity, 2) they do not account
for the stochastic terminal distributions (absorption probabilities), and 3) they do not

! Both simulation models are highly simplified when compared to military simulation
models in actual use. The rationale is the need to focus on the essential dynamic
elements.
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account for the correlation between attrition on the two sides (Ancker and Gafarian,
1992). Techniques developed specifically for aggregating Lanchester equations can not
be applied to identifying the general stochastic model that we consider in this research.
However, the reverse may be true.

Framework

The framework of the Attrition Simulation is illustrated in Figure 3 below. There are two
opposing sides, "Blue" and "Red", each having several weapon system "types". There are
one or more weapon systems within each type. The simulation tracks each individual
weapon system as it fires, and is fired upon, over time. Each weapon system has a
probability distribution describing the time between its firing events; however, all
weapon systems of a given type have the same distribution. The selection of a target
(opposing weapon system type) is performed by a probabilistic fire allocation function
(see Appendix A for details) specific to each type. The probability of a weapon system
destroying a member of a targeted type is specific to that attacker/defender pair. Each
side may be replenished by new weapon systems of specific types ("Arrivals") at specific
points in time. The simulation continues until a predefined combat termination condition
is reached.

Arrivals (,, _ Ariivals
Weapon \ Weapon !

System -- ¢ Systom  |[¢—————
Bluet i Rodd i

Weapon ' Poweanon |
System . ‘ | system  d——————
~ ‘ Rad? :

‘ Weapon ) r o Weapon |
PP System L © system  [4—————
L Blue3 . : Red3 !

Figure 3. Two-Sided Stochastic Attrition Simulation
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The attrition simulation can be applied to a wide variety of opposing weapon systems,
including aircraft. Combat aircraft can be modeled by grouping them into types, where
the types can be distinguished by differences in missions and, optionally, by differences
in airframes. For example, missions might include defensive, escort, and ground attack.
Airframes might include F-15"s, F-16’s, and A-10’s. Depending on the objectives of the
simulation, we could map individual aircraft within different airframe categories to
different missions, resulting in a mixture of airframe subcategories within each mission
grouping. Each of these subcategories becomes a “type” — equivalent to a “weapon
system” in Figure 3 above.

Variables

Each weapon system type within the Attrition Simulation has attributes of lethality and
vulnerability that are characterized by: 1) a vector of kill probabilities (one probability
for each defender weapon system), 2) a probability distribution of inter-firing times, and
3) a fire allocation function to distribute engagements among defender weapon system
types (one probability for each defender weapon system).

The other major variables describe the form of the arrival process (if any). Note that for
the purposes of system identification, it is not necessary to construct a set of arrivals
typical of the problem domain. We are free to use whatever arrival process will allow us
to best identify the simulation model. However, when testing the resulting identified
model, via comparisons to the original simulation, realistic arrival patterns would
become more important.

Initial and Termination Conditions

The initial state is the number of weapon systems of each type on each side. The
termination condition is a description of the state vector that signals the end of the
simulation. One of four rules, each based on force strengths (discussed below and in

Appendix A ) may be used:

1. Absolute Decision Rule — Combat termination occurs when the force strength (of
either side) reaches a given threshold value.

2. Proportional Decision Rule — Combat terminates when the force ratio reaches a
specified threshold value.

3. AOP Rule — Combat terminates when the force strength crosses either the absolute or
proportional threshold.

4. AAP Rule — Combat terminates when the force strength curve crosses both the
absolute and proportional threshold .

For further details on the characteristics and use of these rules see Jaiswal and
Nagabhushana (1995).



Model States

The critical modeling feature of the Attrition Simulation is that the behavior of each
simulation entity depends on the number and types of the other entities within the system.
In other words, the rate at which a weapon system of a given type is destroyed is highly
dependent on the current levels of both opposing and friendly weapon systems. This
implies that we must capture all of the weapon system levels in our state space model
structure. The simplest way to handle this is to work strictly at an aggregated level,
where our state vector is a simple count of the number of weapon systems of each type,
illustrated in Figure 4 below®. This approach is consistent with many existing large-
scale military simulation models (Davis, et. al.; 1997). Within this approach we can
easily model weapon system replenishments as external inputs to the weapon system
state vector.

Weapon
System
1

Destroyed

Figure 4. Vector Based State Components of Attrition Simulation

For purposes of system identification we convert the weapon system quantity vectors into
force strength vectors. By using force strengths we have a common unit of measure for
all weapon systems, thereby facilitating aggregation methods, termination rules (see
below) and assumptions regarding "flow” between state vector components. The
methodology for calculating force strengths is from Anderson and Miercort (1989, 1995)
and is described in Appendix A . Under this approach, the "entities" being modeled are
the units of force strength, which are initially distributed among the various weapon

system types. The current number of "entities" of a given type is IZW, , Where 17, is the
normalized strength factor and W; is the quantity for weapon system type i .

Using a vector of force strengths is a reasonable approach for the Canonical State Space,
Maximum Entropy , and Compartmental Model techniques. For the first two techniques,
this approach to state vector realization results in a deterministic state transition matrix
relating current force levels to force levels in the next period. The standard form of the
state transition matrix is shown in Figure 5 below’.

2 N® = number of Blue weapon system types, N® = number of Red weapon system types
3 The algebraically equivalent canonical form (as produced by the Canonical State Space
technique) would look quite different.
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Destroyed  wsB1 wsB2 wsB3 wsR1 wsR2 wsR3

Destroyed 1 + + + + + +
wsB1 0 + + + - - -
wsB2 0 + + + - - -
wsB3 0 + + + - - i,
wsR1 0 - - - + + +
wsR2 0 - - - + + +
wsR3 0 - - - + + +

Figure 5. Standard Form of Vector State Transition Matrix for Attrition Simulation
for Deterministic Techniques

A Compartmental Model assumes a system in which the various subsystems interact by
exchanging “flows of materials" (force strengths in this case). The contents of the
compartments are then inspected at discrete points in time. The result of the technique is
a probability transition matrix, P(t), of the form shown in Figure 6.

Destroyed  wsB1 wsB2 wsB3 wsR1 wsR2 wsR3

Destroyed 1 p12(t) p13(t) p14(t) p15(t) p16(t) p17(t)
wsB1 0 p22(t) p23(t) p24(t) p25(t) p26(t) p27(t)
wsB2 0 p32(t)  p33(t)  p34t) p3S(t)  p36(t)  p37(t)
wsB3 0 pa2(t) pa3(t) p44(t) p45(t) p46(t) p47(t)
wsR1 0 p52(t) p53(t) p54({t) p55(t) p56(t) p57(t)
wsR2 0 p62(t) p63(t) p64(t) p65(t) pe66(t) pe7(t)
wsR3 0 pP72(t) p73(t) p74(t) p75(t) p76(t) p7i(t)

Figure 6. Form of Probability Transition Matrix for Attrition Simulation Using the
Compartmental Model Technique

The HMM technique works differently than the others; it assumes single entities
traversing the possible system states, with transitions between states governed by
probabilities. However, our simulation mode] does not have actual individual force
strength entities that can be tracked through the system. An alternative is to consider the
entire system as a single entity that traverses the possible system states. The potential
problem with this approach is the huge number of states. For example, if the quantity of
each weapon system type varies between 0 and 10 (11 value levels), and we have 6
weapon system types, we would have 11%=1,771,561 possible system states! A further
difficulty is that any one state has a low probability of occurrence, creating additional
computational difficulties. This full enumeration approach would clearly be impractical
for even the smallest problems.
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The solution is to aggregate “equivalent” (or nearly equivalent) states so that we can
describe the essential system state without tracking every possible combination of
weapon system quantities. The assumption is that certain combinations of weapon
systems are equivalent to others in terms of simulation dynamics. For example, a current
weapon system quantity vector of (WIB, wrE wk wk wk W_;R) might be equivalent to
a vector of(WjB +1, W;B -1, W3B +1, W,R -1, W;R +], W +7) in determining how the
remainder of the simulation progresses. Fortunately, we already have a mechanism for
determining state equivalency via the force strengths. The force strength for side s is
given by:

N° P
§= {ZVW} ; 1i=1,23, .N’;se {R,B}
i=1

We also rescale the V;’ so that the score of the average weapon is always equal to 1.0.
This allows for more rational period-by-period comparisons, and facilitates state-based
analysis by narrowing the range of possible values for the force strengths (Anderson and
Miercort, 1989). Let W = [WB, WR] and N=NB+NR We can compute a scale factor:

SV, = ¥
a==E—— 5o that: V,= % are the scaled strength factors.

2

For a given simulation scenario, let the maximum force strength of either side be given
by S°max and the minimum by S°;,. Divide the interval (S° ¢ - S’min ) into k subintervals.
Each subinterval becomes our aggregate state for side s, resulting in a total of k system
states. The parameter £ can be varied to evaluate tradeoffs between the number of states
and the accuracy of the resulting system identification. Figure 7 below is an example of
the form of the resulting state transition matrix’ for k = 3.

sB1sR1 sB1sR2 sB1sR3 sB2sR1 sB2sR2 sB2sR3 sB3sR1 sB3sR2 sB3sR3

sB1sR1 p11 piz p14 p15

sB1sR2 p22 p23 p24 p25 p26

sB1sR3 p33 p35 p36

sB2sR1 p42 pa4 p45 p47 p48

sB2sR2 p53 p55 p56 p57 p58 p59
sB2sR3 p66 p68 p69
sB3sR1 p75 p77 p78

sB3sR2 p86 p8s p8s
sB3sR3 p99

Figure 7. Form of System State Transition Matrix for Attrition Simulation Using
the HMM Technique

* The blank cells of the matrix are either 0 or &, where € is small relative to the p’s
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Figure 8 provides a sample output from the Attrition Simulation showing the aggregated
force strengths for Red and Blue. Note the high variability of the outputs.

Force Strengths vs. Time
36 i T T T T T T

A R |
o mmﬂlﬁ/ |

1

20+

1 6 L ! 1 1 ! ]
0 20 40 60 80 100 120 140

Figure 8. Sample Output - Attrition Simulation
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Model 2 - Mission Simulation

Background and Framework

The CAS/BAI Mission Simulation is based on a scenario described in Samuelson and
Sims (1995). We have added to the scenario the possibility of an aircraft being destroyed
during a mission (see Figure 9). The objective of the original model is to analyze mission
performance under various levels of jamming. The more jamming, the longer it takes the
Forward Air Controller (FAC) to match a plane to a specific target. The more time spent
in target matching, the less time there is to complete missions before fuel runs out.
Queueing at the FAC will increase as target matching time and aircraft arrivals increase.
We assume that the planes are operating in a target and threat rich environment that is
constant over the simulation time horizon. Aircraft combat missions are limited by the
amount of fuel remaining. If aircraft have sufficient fuel after the completion of a
mission they will return to the FAC for another assignment, otherwise they will return to
base.

i Yes J
. | !
Arrivals ! f
(from Base) | |
{ | S /L S
ol | Target | Combat .~ Enough™
Matching J Mission . Fuel? />
| b
| I
Out of Fuel ' No
v
} Aircraft Camaged/Destroyed
|
Return
To Base « to
Base

Figure 9. CAS/BAI Mission Simulation
Variables and Logic

We assume a constant value for the probability of an aircraft being damaged or destroyed
during a mission (typically 0.0 to 0.25). The duration of the combat mission is described
by a uniform probability distribution ranging from 3 to 10 minutes. The mission includes
attack maneuvering, weapons release, and target area escape. Fuel consumption occurs
at a fixed rate over time and aircraft have about 1 hour of fuel to carry out their mission.
Aircraft that have completed a combat mission check their fuel. If they have used 55
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minutes or more of fuel they return to base, otherwise they enter the waiting area for the
FAC. The fuel level of each aircraft in the FAC queue is also checked at each
simulation event time - if they have used 55 minutes or more of fuel they return to base.
The time required to match targets to a given aircraft is described by the probability
distributions described below.

Target matching time and arrival scenarios are paired so that arrivals do not overwhelm
the FAC. A total of 24 aircraft (a squadron) will arrive during the simulation. Target
matching time is described by uniform or normal probability distributions. A "no
Jjamming" scenario is achieved by the use of an Automatic Target Handoff System
(ATHS). Our simulations begin with no aircraft except that the first pair of arrivals will
be at time 0. The termination condition is when all 24 aircraft have either returned to
base or been damaged/destroyed.

Model States

Unlike the Attrition Simulation, the behavior of a given simulation entity (aircraft) in this
model structure is largely independent of the other entities. The exception to this is the
potential queueing at the FAC. To begin our analysis of the model structure, we see that
aircraft are either “at the FAC”, “in combat”, “damaged/destroyed”, or “returning to
base”. Since the current fuel load is a major part of the event logic, we must also capture
it as part of the state of an individual aircraft. The best way to handle all of this is to
discretize the fuel load into, say, quarters. Similarly we can discretize the size of the
FAC queue (upon time of entry by the aircraft) into something like “light”, “medium”,
and “heavy”. The result is a state-space model with 18 states (see Figure 10 below).

FAC Related States Combat Related States

Returning
to Base

Figure 10. Enumeration of States for the Mission Simulation
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In Figure 11 we see a sample output of the Mission Simulation, aggregating state values
within the four groups shown in Figure 10.

Planes in Target Matching vs. Time (min) Planes in Combat vs. Time (min)
25 : 3 :
« |
20 ’\/L/I'\{'J qu\ 2 ’
15 ) L. \ W[\ ﬂ 1
! N
o F Tinpmiial
/ \ I_', \; ol I
5: 1 L i |
N i
0 s oLt L it !
0 50 100 150 0 50 100 150
Planes Returning vs. Time (min) Planes Destroyed vs. Time (min)
25 2 ‘
l
r./
20 ~ 15 |

v !-—J N i
15 y ]

10 j’_f
5 ) 1 0.5
J
0 ' 0
0 50 100 150 0 50 100 150

Figure 11. Sample Output - Mission Simulation

This model structure can accommodate all of our identification approaches. The
Maximum Entropy and Canonical State Space approaches can operate directly on a state
(observation) vector defined as in Figure 10. These approaches can also both handle the
arriving aircraft as input vectors mapped through input transition matrices.

The Compartmental Model approach operates on a similar state (observation) vector.
However, due to computational considerations for arrivals, the state vectors need to be
segregated by aircraft arriving at different times so that each arriving cohort is identified
separately. The resulting transition probability matrix is similar to Figure 5 but with two,
rather than one, absorbing states.

For the HMM technique we can easily construct time-dependent state (observation)
vectors that are specific to individual aircraft. These vectors take the form of identity
vectors - a vector of zeros with a 1 in the position indicating the current state - which are
then used as input to the Hidden Markov Model algorithm.
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With the exception of the Canonical State Space technique, each identification algorithm
produces a transition probability matrix of the form illustrated by Figure 12 below.
Empty spaces indicate a O probability.

D/D Base F14L F1/2L F34L FIL F1/4M F12M F3/4M F1IM FU4H F12H F3/4H F1H C1/4 C12 C3/4 Ct

D/D 1 P P P P
Base 1 p P p P

F1/4L p p p [

F1/2L p P P p
F3/4L P P P P
F1L p p
F1/4M p p p p

F1/2M p p p p
F3/4M P P P p
FIM p

F1/4H p p p p

F1/2H p p p p
F3/4H p p P P
F1H p p
Ci/4 P P P P P P P P

C1/2 P p P P P P P P
C3/4 P P P P P P P P
c1 P P P P

Figure 12. Form of the Probability Transition Matrix for the Mission Simulation

In contrast, the Canonical State Space technique will produce a generalized deterministic
state transition matrix.
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Algorithm Specifications
General Model

This section describes the four system identification techniques. Each was used to
identify both the Attrition Simulation and the Mission Simulation models from sample
(simulated) data. Each technique estimates a variant of the following general form of
discrete, Linear Time Invariant (LTI) state-space model structure:

x(t) = Ax(t-1) + Bu(t) + (t)
y(t) = Cx(t) + e(t)

where ¢ is the discrete time index, y is an M element (noisy) observation vector, x 1s an N
element state vector (the number of entities in each element), u is an R element input
vector, € is an N element system noise vector, e is an M element observation noise
vector, 4 is an N x N state transition matrix, B is an N x R input matrix, and C 1s an M x
N observation matrix.

This section provides a detailed mathematical description of each of the system
identification techniques proposed for this effort, i.e.,

Canonical State Space
Compartmental Model
Maximum Entropy

e Hidden Markov Model (HMM)

The description includes the algorithm itself, how it is adapted to the selected simulation
models, and methods for calculation of prior estimates of the model parameters.

22



Canonical State Space Technique

The algorithms described in this section are based on work by Guidorzi (1982, 1981,
1975).

Framework

Given a set of (noisy) system inputs and outputs:

u(1), u(2), u(3),.......u(T)
y(1),y(2), y©3),....... y(T)

where u(t) is an R element input vector and y(t) is an M element output vector such that

u(t) = u'(t) + d(u(t))
y(t) =y'(®) +d(y(1))

where d(u(t)),d(y(t)) are vectors of additive, zero mean, uncorrelated noise and u'(t) and
y'(t) are the underlying noise free inputs and outputs.

The LTI system is defined as:

x(t+1) = Ax(t) + Bu(t) t=12,....T
y(t) = Cx(t)

with an algebraically equivalent form:

M Vij R v

Vit +v) =2 @yt +k+ D+ > Buu k-1 t=12,...T
J=lk=1 j=lk=1

General Algorithm

The approach uses 4 major phases:

Structural Identification

Parametric Identification

Conversion to Canonical State Space Form
Recovery of state vector

R
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Structural Identification’

Determines a set of scalars: v;, 1= 1,2,...M, ( Z; v; = N) and vj;, which completely
determine the canonical structure of A and C, where

Vi TV for l=_]
vij = min(v;+1,v;) for 1>}
Vi = min(v;,v;) for i<j

By structure we mean that certain elements must necessarily contain the values 0,1, or a
parameter (determined via the Parametric Identification phase). Structural identification
is equivalent to determining the degrees of delay in equation error model structures.
(This phase alone provides sufficient information to construct C).

Consider the set of input-output data

vi(t) wntt) ] ym(t) ym(t+l) u(t) b w®
y](l+1) yl(t+2) . : )’M(H'l) Yx((t+2) . U](H"l) . . uR(H'I)
yi(t+L) nit+L+1) i ya(t+L) . | w@D)y B ] ur(t+L)

= (y;(t),y1(t+1)... .. fym()ym(tH D) w (B, Jur(E), )

Let:

Li(y)) = (yj(),y;(t+1), ....y;(t+i-1))
Li(u) = (g),y(t+1), ... yj(t+i-1))

1

R(8y, 82, 83,... Omr)™ {Lal On)s-Ls (V! La (4, ):'--Lo’u+R (ug)}
M+1 ‘

Spt

S(81, 82, 83,.-.  Omsr)=R(81, 82, 83,... Swsr) R(31, 82, 83,...  Swiem)

The approach operates on a sequence of matrices, S(8;, 33, 83,... Om+r) Where the
indices, 8;, 87, 83,... dmur, correspond to the orders used in the underlying input/output
data. The sequence of these matrices is constructed such that the values of the 5y
increase monotonically:

S(2,1,...,1)8(2.2,...,1) ....5(2.2,....2) $(3.2,...2)S(3,3,...2)....

3 Note that in our identification of simulation models the system states are all directly
observable (M=N). In that case we already know that all of the structural parameters v;
will equal one and this step may be skipped. This also implies that C=L

24



To each S; (1= 1,2,...M) we can associate a PPCRE (predicted percent reconstruction
error) calculated as:

PPCRE;= 100 * ( A/(L-1))"* / o;

S; = the S matrix where index i has just increased by 1

A; = det(S;)/det(S;.1) (S;.;1s the matrix where index 1 has not yet been increased)
L = the length of 1/o streams analyzed

o; = the standard deviation of the i output stream y;*

The algorithm examines the PPCRE in sequence. If the PPCRE associated with the
matrix S(8y, &y, ... .. 3;,... Owmar), wWhere the last increased argument with respect to the
the preceding matrix in the sequence is §; , does not decrease “significantly” with respect
to the PPCRE for S(8,-1, 8,-1,.... 8;-1,... dmsr-1) then we fix v; to §;-2. The sequence is
then restarted at S(8,-1, 8,-1,.. §;-2, 8;41-1... Smar-1) with index i fixed. The algorithm
resumes with

Sv,,v V.,V )

i3 Va2 Vo Vil

and continues until all M v; have been calculated. (Note that in the above description, an
index will not be decreased if it has already been fixed).

We extended the original Guidorzi algorithm to handle two considerations: 1) the sum of
the v;’s must be equal to a known previously determined value of N, and 2) it is difficult
to a priori determine the decrease in PPCRE that should be considered significant.

Without modification, the algorithm above can produce an N that is either less than or
greater than the desired value. If N is less than that desired, we can say that the
algorithm was too willing to accept a decrease in PPCRE as “significant”, while the
opposite is true for an N greater than that desired. To handle this, an outer loop was
constructed where the initial significance is set relatively high (a difference of 10 in
PPCRE). If the basic algorithm ends with N too low, the significance is reduced by half
and the algorithm is restarted. On the other hand, if N is about to become too large, the
entire algorithm is terminated with the current set of v;’s.

Parametric Identification

This procedure determines the parameters o, which are placed into specific elements of
A, and the parameters B;;, which are placed into specific elements of an intermediate
matrix, B . The parameters are determined via least-squares regression.
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Let:

Vs = (asll""aslvl l---laﬂm-"awp‘u lﬁlsl"'ﬂl.ws |...] ﬂRsl““ﬂRsvs )

R =R(vy,...Vgy, Vs V)

Then we solve for y, via
7, =(R'R)'R'y(t+v,) s=12,.M
Conversion to Canonical State Space Form

The matrices A and C are constructed directly from the parameters already determined.
A=[Aij] where:

0 0 0]
Iv-—l :
4= 9 1 4 =1 0 0
Qii| Qity; |Gyt Fjy 0 . 0_
(vi X V) (vixv;)
We also have:
1 0 0
0 01 0 0
C =
0 . wo oo i e .. 010 .00
) T )
1 (v +1) (v, +. v, +])

Determination of the B matrix requires the construction of an intermediate matrix, M.
M is constructed from the parameters, ity while B is found from B = M ™' B as follows:
M =[M,] (,j=1.2,..M) where

[~y —@yz . Q1 —Qp o~y 0
-3 — Qg - 1 0 : 0
M; = : : . 0 : M, = ~ 0
= Qi 1 0 : 0
1 0 0] . 0 i
(vixv;) vix ;)
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Bl lBilI A ﬂiRI
B=| : B =| : :
BA[ ﬁilviv ﬁiRvi

Recovery of the State Vector
The state vector is found as a function of the input-output sequences using the relation:
x(t) = V(2)y(t) - WZ(2)u(t)

V(z) and Z(z) contain various degrees of the delay operator, 7', and have structures that
are determined from N,MR and the v;’s.

1 0
PO : I
0 0 o7 |
Viz)={ | , Z(z)=
0 1 <" ax 2
0 .. M7
(NxM) (R(Vie =1 x R) Ve = Max(v;).

W is a matrix that contains parameters from the B matrix.
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- S
X 0 0
: b, ;
b, b 0 .. 0 b,
W = : : B=! :
0 0 by
Nowy 41 0 .0
Novy 41 0 e
by, by 0 . 0
(NxR(vvr1))

No modifications to the general algorithm are required for the simulation identification,
nor are prior estimates required.
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Compartmental Model Technique

The algorithms in this section have been adapted from Seber and Wild(1989).

Framework

Here we assume that our system can be described as a continuous time linear flow system
with N states. State 1 is assumed to be an external or “sink” state. The state vector
provides the number of customers in each state. We wish to estimate the fractional
transfer coefficients y,, which are defined as the rate at which customers are passing from
state r to state s, divided by the number of customers in state r. (Note that the subscripts
are reversed with respect to the standard literature on Markov chains.) It can be shown
that the intensity matrix (or instantaneous transfer-rate matrix), A, will have the
following form:

A= 0 Y12 Y13--- - YIN
0 -Zs7Ys2 Y23... .- Yan
0 Y32 ‘Zs¢3‘Ys3 YN
0 Y2 N3 -ZseNYsN

We use 6y to denote the estimate of the k™ unknown y,; that is, 8; =v12, 08, =7v13 Oy =
Y, BN = Y23, etc., and that the transition-probability matrix P(t) will have the following
form:

P(t)= 1 pPi(t) pus(d)... pin(t)
0 pa(t) ps(t)... pan(t)
0 po® pe®.  Pal®

We assume that we can observe the state vector over T time periods and will estimate the
transfer coefficients from these observations. Let:

yi = the i" measurement on state j
x(t) = customers in state j at time t, observed at times ty, t,, ... .ty to produce y; = x;(t))

Yj(i) = (Yi2, Yizo--- - Y ) = (Xati), Xs(t).... .. Xn(ti))'

y="y? Py =

xXa(t)
x3(t)

xxtr)

?gz(tr)
xa(tr)

xn(tr) |
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Note that state 1 is not included. Use of it would introduce an exact linear dependence in
the data. It can be derived from knowledge of the other states at time t.
Let X(t) be the state occupied by any particular customer in the system at time t. Then:

E[x(H] = »_x,(0)p,(0,0) where p(0,t) = pr[X(1) =j | X(0) = 1]

Since we are assuming that the Markov transition probabilities are time independent,
then p;(0,t) = p;(t), where p; (t) is the j,'™ element of the transition probability matrix
P9 It follows that:

E[x(0)] = Z: %0)pe®) > x,(0)p, (1)

We can characterize the expected system response as:

f8)= 1 E[x:(t1)]
E[xs(t)]

Efseadt)]
Efxa(t2)]
E[xs(t2)]

E.[XN(tZ)]

Efxa(to)]
Efxs(to)}

E[ xu(tr)] ]

Let g; = x{(t;) - E[x;(t)] and V() be the covariance matrix of the g;;

The terms of V(0) are defined as follows:

varfx(t)] = ix,(O) P, (1) (1-pu(t)) (diagonal elements)

N
COV[Xj(t), Xk(t)] =- ZX’ (O)pjr (t) pkr(t)

cov[xj(t), xi(t + D] = piy(r)var[x(] + Zrj cov[xi(), X:{t)] Pa{®)
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General Solution Technique

To solve for the v, (values for 8;) we use an iterated two stage estimation procedure.
Thatis, for i=1,2,...., obtain 6 by minimizing;

[y — f&)I'V"(6")y — f(8)]
via the following series of Gauss-Newton update steps:

o™ =o' + [VH(eyV'(6”) VEO)" VAOYV'(6%)y - f(6)]

Upon calculating optimal parameter values for a given V(0°%), anew Vis computed using
the new parameters. The optimization is then repeated using the revised V(8°). The
process continues until convergence is achieved (detailed steps are shown below).

To compute f(6'") and V1{6') we can use a spectral decomposition where
A=SAS"

S is a matrix such that the ™ column is a right eigenvector of A corresponding to the
eigenvalue, A;, and A = diag(A,, A,,... Ay ). It can be shown that

P(t) —_ eAI — sel\ls-l
where e = diag(e™", €*,... ¢™™). This allows use to compute f(8') via
f(t) = P(t)x(0)

It should be noted that the above decomposition strategy is not robust. In some cases the
decomposition does not exist; S may not be invertible (is singular) or the matrix P can
contain complex numbers. (Indeed both of these situations occurred frequently with both
of our simulation models). Sophisticated numerical approaches have been developed to
handle these types of situations (see for example: Bates and Watts, 1988). Practically
speaking, the developers of MATLAB (The Mathworks, 1999 - the implementation
language of the algorithms in this study) have worked out these complexities in their
built-in function "expm(At)" which computes e without a spectral decomposition.

It remains to define the elements of V£(6"). It can be shown that in the case of known
initial conditions and no inputs:

ox(t) / 30 = e™ * [A® e x(0) = SB¥S™ x(0)
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where A® = 9A / 80, and "*" denotes the mathematical convolution operator. Note that
for a given k, A® will be all zeros except for a 1 in the position indicated by k = (s,r) and
a -1 in the position A(r,r). The matnix B® is defined with elements:

by = g™ Aul )

A = (™ =)/ (Ae=A) As# A
test Aoy

The terms gsr(k) are elements of the matrix, G®, defined as
G® =[S"A%S]

As with the computation of expected values, the above approach relies on the S matrix of
eigenvectors, and suffers the same potential weaknesses. Again we can rely on the
MATLAB developers to provide a numerical solution, which they have done with the
built-in function "conv2(A,B)" which provides the convolution of two matrices A and B.

Simulation Estimation Algorithm

Prior Estimates

Let:
Y, =the '™ element of the observation vector at the beginning of time period # in the "

simulation run (amount of “material” in compartment r).
d; = the amount of flow from state vector element (compartment) » to state vector

element s during time period ¢ in the j‘h simulation run.
At = the time between simulation observations (a constant value)

In the Mission Simulation we know the values of the 7, since we are tracking

individual aircraft as they move from state to state. In that case we can easily estimate
the fractional transfer coefficients, 7_,, by using the average historical rate:

T.-1 y
nruns  J sr
Z Zdy // |
i r
— = ALY,

A Jj=t 7 g

Sa-n

sr

In the Attrition Simulation we don’t know the specific state to state flows by aircraft so
we instead estimate the fractional transfer coefficients via a regression based technique.
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Let:

6,(t) =(Y,,-Y)/ A t=12,...T1;j=12,...nruns; r=1,2,..N
Y, =) +Y], )2 t=12,...T-1;j=12, .nruns;r=2,..N

The &,(¢)can be interpreted as the average change in state r per unit time during period t

of run j, and the )7,j.’ are the average state values during period t of run j. We can form

v _2 v _l’ . v — v v L v . 2 LI
Y, =, ,Y;,,.yg.\ ); Y, = (YU,YZJ.,...YTN.) ;Y =(1,Y Y )
and 9 = (é, , éz,....éw_, yv1) is the vector of unknown rate coefficients whose values we

seek (the nondiagonal elements in columns 2 through N of the rate matrix, A). Some
manipulation is still required to set up the regression matrix to account for the balancing
conditions in each element (net increase = flow in - flow out).

Let the regression matrix be
y=F'72,.7"y

where each 77 has (N-1)*(N-1) columns. The nonzero columns of 7" are constructed as
follows:

e ifr=1, the first (N-1) columns are set to ¥

o ifr>l:
1. Divide the columns of 7" into N groups, where the first group has (N-1) columns,
and the (N-1) remaining groups have (N-2) columns.
2. Modify ¥ by removing the (r-1)* column; call the resulting matrix ¥,,, and call
the removed column, ¥, ,,.
3. Set the r™ group of columns in 7" to 7,,_,.
Set the (1-1)st column of every other groupin ¥” to -Y,;,.

We can now define the total set of equations as:
Y6=6

We can solve for & using non-negative least squares. Non-negative least squares is
similar to ordinary least squares but constrains the coefticients to be non-negative.
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Algorithm

In the Mission Simulation, the algorithm is performed on each cohort of arriving aircraft
while in the Attrition Simulation we do not need arrivals to perform the identification. In
that case we have just 1 “arriving” cohort, the initial weapon systems.

Let H be the number of cohorts in the simulation®.

Forh=1:H

{

a) Set the time indices of the data so that t=1 corresponds to the arrival period of
cohort &

b) Select an initial set of prior estimates, § . for the unknown elements of A.

c) Set the composite rate matrix, Ay, to zeros

For j =1:nruns

) 89=143:8,>0i=12, (N -1}, 6"= 6% a=0

b) Compute the spectral decomposition of A(6°), i.e., find A and S or an
equivalent technique to find P(t) = e fort=172,...T

c) Compute E[x(t)] (via P(t)’s ) to obtain f(6°) terms

d) Compute V(8°)

e) objt = objv = (y- f(6%))'V(8°) (v- f(68%)); objtold = objvold = inf;

search_tolerance = objv/10000
While (objvold — objv > search_tolerance)
objvold = objv
While (objtold — objt > search_tolerance)
objtold = objt
Step 1. Compute Bx%g a via convolution method for k =

1,2,...length(8%) to obtain Vf(6") terms fort=1,2,... T;

6 In the Mission Simulation the algorithm is performed separately on each cohort of
arriving aircraft while in the Attrition Simulation we do not need arrivals to perform the
identification. In that case we have just 1 “arriving” cohort, the initial weapon systems.
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end while

end nruns

A;, = Ap/nruns

Step 2: Compute 6**' using a modified Gauss-Newton update
formula and V = V(8"):

A9 = [VRB*YV'(6) VRO VAEYV'(@)ly - 6]

Ensure nonnegative 6:

Apax = Max 8" +aA3>0
0<axl]

0" = 0"+ Ana A

Step 3:

a) Compute the spectral decomposition of A(6*"') (A and S)
or an equivalent technique to find P(t) =™ fort=12,..T
b) Compute E[n(t)] (via P(t)’s ) to obtain f{6""") terms

Step 4. objt = (y- f(6*")) V(6") (y- f(6™)) ; a= a+1

end while
0" =0"";6= 6" a=0

Compute V(68")
objv = (y- f{6")) V'(6") (y- f(8"))

Add in matrix values:
Ah = Ah + A(GV)

Compute final weighted average composite rate matrix:

The identified system is the sum of the identified cohort systems, appropriately indexed
for the current time.
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Maximum Entropy Technique

The Maximum Entropy technique is based on methods described in Golan, et. al.. (1996).

Framework

In this case we will model our simulations in the form of the following LTI system:
x(ty= Ax(t-1) + Bu(t) + g(t) t =23,....T

where x(t) is a known N x 1 state vector providing the numbers of entities in every state,
u(t) is a known R x 1 input vector providing the number of entities entering each state, A
is an unknown N x N state-transition matrix, and B is a known, or partially known, N x R
input transformation matrix. The terms g(t) are unknown N x 1 vectors of system errors.
We assume that the £(t) are distributed uniformly around 0 and their covariance matrix is
unknown.

In the Attrition Simulation, R=N and B=I, so that there are no parameters in B to
estimate. In the Mission Simulation R=1, and B is an N x 1 vector of probabilities
mapping the entering plane to one of the "queue states". Therefore, B will have
"queueStates" number of non-zero entries, since we assume that the plane arrives with a
full tank of fuel.

Define the following discrete support points:

Ze =z Zea oo Zgp) s=12,.,Nr=12,...N
Zbr = [Zbr], Zb,z, . ..Zerb] r= 1,2,. ..N
Vi) = [Via(t) Vi) ... ... Ve E(t)] r=12,.N;t=23,....T

The discrete support points have corresponding probabilities:

Pst = [psrb Pse2 -0 - Per] S$= 1,2,..,N; r= 1,2,... ,N

pbr = [pbr]’ pbr > ee- -perb] Ir= 1,2,.. .N

we,(t) = [Wsrl(t) Werz(t) ...... WE,E(t)] r=123,..N;t=23,...... T
such that:

a =Zg Pst =12 N;r=12,..N

g(t) = V(1) wo(t)' r=123,..N; t=23,...... T

brl = Zbrpbr' r= 1,2,. ...N
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Then let:
1p=[1,1,....1] (vector of length D)

1w =[1,1,...1] (vector of length Db)
1z =[1,1,... 1] (vector of length E)

The probabilities must also satisfy:

Ipp:' =1 s=12,., N, r=12,... N

1pp pb, ' =1 r=12,....N

w(t)1g'=1 r=123,.. N, t=23,... ... T
0<pm=1 s=12,,N; r=12,...N; k=12,..D
0<pbyi<1 r=12,...N; k=12,...Db

0<wi(t) <1 r=12,.N; t=12,....T; k=1.2,...E

Now also define prior estimates (relative weights) corresponding to each of the
probabilities defined above:

Qsr = (qsrla Qsr2 «-- -+ qer) 5= ],2,..,N; r= I,2,...,N
ab; = (qe1, G2 - - QDo) r=1,2,....N
q; () = (g7 )95 (1), (1)) r=12,,N;t=23,..T

We can then form a constrained nonlinear mathematical program7 to determine the pgy ,
pby ,and the w4 (t):

N N D p N_ Db N E T we (¢ )
Minimize: » > > p, In( "*)+22pb ln( )+ZZZW () In(—== g
s=1 r=1 k=1 r=1 k=1 r=l k=l t=2 rk( )
Subject to:
x(t) = [ZP]x(t-1) + Bu(t) + VE(t)w(t) t=23,...T
Ipps' =1 =12,,N; r=12,... N
lDbpr' =1 I'=1,2,...,N
wi(t)1g'=1 r=1,23,..N;t=23,...... T
0 £ pax s=1,2.N; r=12,...N; k=12,...D
0 < pbx r=12,...N; k=12,...Db
0 < wWhi(t) r=12_N; t=23..T, k=12,...E

7 Assume that terms of the form x In(x) are equal to 0 for x = 0.
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where:

ZP..= ™ “column” of [ZP] = diag(z.,, Zar,... . Zne)*(P1ss Par>--- - PNe) r=1,2,...N
B = diag(zb,, zb,, ... zby)*(pby, pb2, ... pbn')

VE(t) = diag(vi(t), v'y(D), ... Vin(D)) =2,3,....T
WEE(Wh (L), Wh(D),.... win(E)')' t=23,...T

In the Mission Simulation we also constrain the columns of A and B to sum to 1.0:

.

N D
Zzzsrkpsrk =1 r=1,2,..N
s=1k=1

N Db
ZZstkpbsk =1
s=1k=1
Simulation Estimation Algorithm

Prior Estimates

Attrition Simulation

To find the support points, zyy, for the probabilities, ps. , we will perform regressions on
the state element values in each simulation run.

We use the convention that state 1 represents the "sink" (destroyed weapon systems).
With six weapon system types, three on each side, N=7 and the system transition matrix
must be of the form shown in Figure 5.

Let:

Y] =the ™ element of the observation vector in time period ¢ in the ™ simulation run;
r=12,..N;j=12,. . .nmuns; =12, . T,

Y, =) =Y YY) 223, T Y = (1, Yy, Yy )

X = (Y;,Y; ,....YgN),X,J- = diag(x,;, x;m'| seee XM N ) , where m; = (m;;,Mi,... MiN_1)

and

my

_ 1 ifi,jSN; OR i,j >Ng
-1 otherwise
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is the "mask" function to enforce the matrix form in the table above. (Ng is the number of
weapon system types on the "Blue” side.) Then if
X =(X s Xy Xp ;) a = (@, a,a0,) . A = (4,03, ,.03.")

for each run j we can specify:

1y

XAl =Y,

which we can solve for A using nonnegative least squares. To attain current estimates of
the elements of A’ we again utilize our mask vector so that:

Al =, 4L),and 4] = (0, ALm,,, Almy, Alm, , Hfori=23, N

il»

Mission Simulation

To find the support points, z, for the py we can proceed as follows. Let:

Y, =the 1 element of the observation vector at the beginning of time period ¢ in the j”
simulation run (amount of “material” in compartment 7).
d;’ =the amount of flow from state vector element (compartment) r to state vector

element s during time period ¢ in the j‘h simulation run.
In the Mission Simulation we know the values of the . since we are tracking
individual aircraft as they move from state to state. In that case we can easily estimate

the state transition coefficients of a given run j by extracting the average historical rate
from the simulation:

i
sr
24
al =— s=12,.N;r=3,.N
J

hR?
t=}1

Note that states 1 and 2 are “sinks” corresponding to the “destroyed” and “returning”
states. Therefore we already know that columns 1 and 2 are all zeros with the exception
of a “1” in the 1% and 2™ rows respectively.

A5 =(1,0,al),
AL =(01a),
and 47 = (0,0,a’)fori=2,3,.N

ie

Note that the resulting values will be average transition proportions between the values of
zero and one.
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To get estimates for the support points zby for the pby we can use the historical average
proportion of aircraft that enter the simulation in each state. Let:

B’ =(b/,b],.b}) where b/ is the proportion of aircraft entering state / during run /.

B=(B'.B,.B™)

Our mean estimate for parameter j, j = 1,2,...N, is the mean of the values in column.
Similarly, a standard deviation can be computed for each parameter j from the data in the
corresponding column. From these, we can calculate a 95% (say) confidence interval for
each parameter. One support point will correspond to each end of this confidence
interval while any additional support points will be evenly distributed over the interval.

Attrition and Mission Simulation

Let 4 =(A4', 4%,... A" )be a matrix where each row i represents the vector of
parameters estimates from run i. Our mean estimate for parameter J,J=12,..N*N, is
the mean of the values in column j. Similarly, a standard deviation can be computed for
each parameter j from the data in the corresponding column. From these, we can
calculate a 95% (say) confidence interval for each parameter. One support point will
correspond to each end of this confidence interval while any additional support points
will be evenly distributed over the interval.

We can also use our statistical model to find a range of support points, v°(t), for the

noise terms, €(t). Let e be the residual term for the " element from the f’ " simulation

run at time . The residual is the difference between the observed simulation value,Y,” ,
and the estimated value x/, resulting from a model whose parameters are estimated as

described above. We can set an upper support point, v°5(t), to max(abs(e;)) and a
J
lower support point, v;(t) to - max(abs(e;;)) , with any other support points distributed
J

evenly across the so defined interval®.

We set the qeu, gbw, and q°u(t) to 1/D, 1/Db, and 1/E, respectively, to provide uniform
weights for the support points. We still need initial estimates of the P , pbu, and
w°4(t). These are found by solving a linear programming version of the problem
(“linprog” in the MATLAB Optimization Toolbox). That is, we formulate the constraints
to the problem identically to the setup for the nonlinear programming version, but instead
minimize a linear sum of the probabilities.

® In practice, we found that the algorithm behaves better when we also put a floor on the
values of the v°5(t) of say, 1.0, rather than 0.
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Algorithm

Step 0:

a)
b)

c)

d)

€)

Set D, Db, and E , the number of support points per element of each type.
Set T =max(T);)
J

Set the support weights: qs; = (Qer1, Gsr2 -+ --- o) (s=12,.,N;1=23,.. N); gb, =
(e Gez - - Geoo) (1=2.3,...N); g7 ()= (g7 (1).q7, (), g (D) (r=23,. N, t=
2,3,...,T) to 1/D, 1/Db, and 1/E respectively.

Using the data from the nruns simulations, determine the support points: z = [z,
y 2 S zop) =12, N, r=23,. N);zb,=[z1,2, ...... Z o] (r=2,3,....N);
VE(t) = [VEa(t) via(t) ... ... VeE®D] (r=123,. . N, t=23,...... T)

Set the composite matrices, A and B, to all zeros

for j = 1:nruns

{

}

Step j1. From the simulation data in iteration, j, Yj; = (Y,}, Yrj2 YUN yand Uy, t=

1,2,...T;, construct the constrained nonlinear mathematical program that, when
solved, will provide the values for: ps; = [Psi1, Pse2 - - psol s= 1,2,.,N, 1=
2737' .- :N; pbr = [pl’la P2 ovves pr.Db] r= 2:3,- .- :N; wer(t}: [Warl(t) WerZ(t) ------
wie)r=123,. . .N,t=23,...... T;. Let Aeq be the resulting constraint matrix
for all equality constraints and beq the corresponding right-hand side vector. To
determine an initial solution, solve the linear programming model: min ¢x0
subject to Aeqx0 = beq, where ¢ is a vector of all ones. The initial estimates, X0,
are taken from the resulting solution vector '

Step j2. Use the MATLAB “fmincon” nonlinear programming algorithm (large

scale version) to solve for the unknown parameters. Use the results to construct
the posterior matrices 4,,5B; .

Stepj4. Set A=A+ 4,,B=B+ 5,

Final Step. Calculate the final estimated posterior matrices: A=A/nruns, B=B/nruns.
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HMM Technique

The algorithms in this section are based on work by Elliot, et. al. (1997).

Framework

Here we consider a discrete Hidden Markov Model (HMM) of the following form:

XQ+I=AX(+81+1 tzo,l,...T"l
Y[+] =CXt+e(+] t=0,1,...T—l
where:

X, €Sx={g, &, ,..-&};&=(0,...1,0...,0) (vector of 0°’s with 1 in it position)
Y. eSy={fi, 5, ,.. 0 ; £=(0, ...1,0....,0) (vector of 0’s with 1 in it position).

Accordingly:
InX,=1
1y Y, =1

where 1, is a row vector of ones with dimension n. A and C are matrices of transition
probabilities, such that:

N M
Sa,=Ye, =1
s=] s=1

g, and e are driving noise and measurement noise in the form of Martingale increments
that satisfy:

E[¢!,,]1=0 E[el,;]1=0 1n&=0 Ime, =0
g1 = diag(AX,) — AdiagX.A
ew; = diag(CX,) — CdiagX,C

Recursive Estimators

The revised estimates AZ,, 53, of the parameters A,; , Cy; at time t can be determined via:

im=rr) 1<r<N:1<s<N
#(1) .00
C.(t =7'(T'm) , 1<r<N;1<ssM-1
sr() }”(0’)
- M-l
Corn()=1=Y.C(1) 1<r<N

s=1
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where:

J = the number of jumps from state g, to state g; up to time t
Or

", = the number of occasions up to time t for which the Markov chain X has been in

state g, (occupation time)
T = the number of times up to time t that the observation process is in state f; given the

Markov chain at the preceeding time is in state g, (state to observation transitions).
v(H,) = the expectation under the change of measure of the random variable (vector
process) H,

Let:
¢;=the j" column of C
a; = the ™ column of A

Mo,
c,(Y,)= Mﬂcf;
r=1

Then define v (/7 ),y O ), Y T, ), via the recursive functions:

N
Ve (Jri) = 2.6 (r( I g + eYu)(a'g)asgst =0,1.2,... T-1
j=1

Yeri( Jﬁ])= In Yo (Jra) t=0,1,2,...T-1
N '

Yt+l,1+1( Orrn )= ch(Ym )( 'Yt,t( O/ )gj)aj + (Y )a'ga: t=0,1,2,...T-1
7=l

Yerr (O)) = In Y OF) t=0,1,2,...T-1

N
Yorren(T5) = ch(ym ) (el Tprs)gj)aj + M(qg)(Y,,, f)cxa, t=0,1,2,..T-1
Jal

Yer( 75 = In Yo T50) t=0,1,2,..T-1
N

where gu1 = D,¢,(Y,,)(0'g)a;. 6= (a8, - . -adgn) t=0,1,2,..T-1
j=l

The q(g,) are the unnormalized conditional probability distribution for state r at time .
Thus the normalized estimates are:

p.(2.)= q,(8,)

> a.(g,)

r=1
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Simulation Estimation Algorithm

Prior Estimates

Let Y be the ™ element of the observation vector at time period ¢ from the ™ simulation
run (indicator for state 7). Then we can define the elements of the prior transition matrix
A as

nnms Tj

> Ay, T))

J=l =2

~

sr
N nruns

Y S S

s=1 j=1 =2
1ifY, =1Y, =1

_ (AND function)
0 otherwise

where A(Y,,Y,) ={

Let qp; be the prior estimate for the state vector in period 0 of the j™ simulation run. Note
that Y};, the first observation, is one period later; that is, after a pass through the
transition matrix. To properly handle this, we define a “dummy” initial state, say, N+1.
We set up the model so that at time O we are in state N+1 with probability 1 and that we
will transition to the state observed in period 1 with probability 1. Thus, the (N+1)™
element of qy; is set to 1 and all other elements of the vector are set to 0. We add row
N+1 and column N+1 to our prior matrix, Ahat. The new row and column contain zeros
with the exception of the k™ row of the (N+1)st column, which is set to 1. Similarly, we
add an (N+1)™ column to our Y data containing all zeros. Now the algorithm will
perform properly for our situation.

In our state space model of the Attrition Simulation we do not have "simulation entities"
in the sense of multiple interacting entities traversing states. Instead the system itselfis a
single entity that traverses possible Red/Blue force strength combinations. We know the
initial state since we always know the initial Red/Blue force strength. The Mission
Simulation is somewhat different. We know the Aistorical initial state of each entity
(aircraft) in the simulations from the "statesByPlane" output file. However, in our state
space model, we do not know the precise starting state of an aircraft arriving at an
arbitrary time in the trajectory of that model. In that case, to determine a starting state
we must make use of recorded frequency data regarding the states which aircraft enter’.
For additional fidelity, these probabilities can also easily be made conditional on the
number of aircraft currently in the model.

? In effect, a pseudo "B" matrix.
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Algorithm

Step 0:
a) Setag = ,:1” (1 £r<N;1<s<N). Forthe Attrition Simulation: a,=0 (I <1< N+1;
s=N+1), a;,= 0 (r = N+1; 1 <s < N+1; s #Kk), agne = 1, where k is the observed state

in time period 1.
b) Set the weighted average composite transition matrix, A, to zeros.

For j = l:nruns

{ Step j1: Initialize the recursive elements:
Yoo(O5)=0(1 <r<N), and
Yool J3)=0(1 Sr<N; 1 <s<N)
qo = qoj

Step j2: Fort=1,2...T;, recursively update the estimators:
'Yt,t( J/ré') » ‘Yt,l( 01r )’ and Ch

Step j3: Update the period T estimates of A, via:

ayr:?’r,(‘]r,) , I1<r<N;1<s<N

Step j4: Add weighted estimates to the composite transition matrix. For each

column, r, perform the following update:
7,1

a,=a,+(>Y))a, r=1,2,.N
=1

}

Final Step: Compute the final weighted average composite matrix by columns:

a —
a = r aruns ;=1 r= 1,2,N
r
IR
J=l =l
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Test Plan

Cross Validation Testing Overview

To quantitatively estimate and compare the relative performances of the different
algorithms, we use a test plan and analysis approach based on the statistical technique of
model cross-validation. The general technical approach is as follows.

1.

(8]

We evaluate the algorithms under a variety of simulation scenarios. A scenario
defines the inputs and parameters of the simulation models. The different scenarios
are outlined in the following section — “Simulation Scenarios”. Each scenario is run
3 times, each time with a different “seed” (starting state) for the random number
generators. The seeds were obtained sequentially from a table of random digits
(REF, 1984).

We use the Attrition Simulation and Mission Simulation models to generate multiple
data sets, or sample realizations for each scenario. Each scenario/seed within a given
simulation model produces 11 x 10 simulation output data sets (11 different data
files, each containing the outputs of 10 simulation runs).

These 11 data files are presented as training data to each of the four algorithms in
Step 3. That is, each algorithm is used 11 times to produce 11 identified systems.
Each system identification utilizes the outputs of 10 simulation runs.

We next use each fitted model (identified system) to predict outputs in each data file
not used to fit it. (This is a variation of the technique of model cross-validation.)

For probabilistic fitted models ( HMMAttrition, HMMM ission, EntropyMission, and
CompartmentalMission), the predictions are the frequency distributions of the
outputs over 100 runs of the identified model. Otherwise the predictions are the
outputs of a single run of the model.

The actual values used for comparisons are the frequency distribution of outputs
from the simulation runs in the other 10 data files. Generally speaking, since 11 data
files were created in Step 2, the number of models fit to them is 4 x 11, and the
number of predictions made is 4 x 11 x 10 (for each seed of each scenario of each of
the two simulation models).

The general approach above is modified somewhat in the case of the Canonical State
Space algorithm. Recall that this approach requires a relatively rich set of inputs and
outputs to operate upon. However, none of the other algorithms require inputs. (The
Mission Simulation is defined as always having arriving aircraft/inputs, but the arrival
pattern is not used directly by algorithms other than the CanonicalMission algorithm. In
that case the algorithm uses an “enhanced” arrival set with extra aircraft.) This presents a
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problem when comparing the absolute differences in means generated by each algorithm,
the scale of the outputs is different because of the differences in inputs (weapon system
reinforcements or extra aircraft) that arrive during the course of the simulation. We
resolve this by using two simulation data sets for the CanonicalAttrition and
CanonicalMission models. One set is used for training only, while the second data set is
used for testing the identified model. The latter is the same data set used to test the other
algorithms.

Testing of Model State Matching

In the Attrition Simulation, the outputs evaluated are the Red and Blue force strengths
over time. The system identification algorithm typically operate on a state vector of
force strengths by weapon system type (except for HMMAdtrition), however, the outputs
of concern are still the aggregate force strength on each side.  The rationale is that the
HMMAttrition algorithm can only operate on a state framework defined by the aggregate
Red/Blue forces strengths. To maintain comparability between all 4 algorithms we must
use this same metric in each case.

In the Mission Simulation, the outputs evaluated are the aircraft populations in each state
of the model over time.

The key metric is the absolute differences in mean output values, over time, and also
averaged over all time periods. In deterministic models, the mean value will simply be
the single output value. A secondary metric is the average differences in standard
deviation, over time and also averaged over all time periods. (This metric applies mainly
to probabilistic models). The rationale for choosing these metrics is to provide a
consistent and relatively simple means of comparing the distributions of the model output
to the distributions of the simulation outputs.

Testing of Model Based Decisions

We would also like to see if the identified models would lead a decision-maker (person
or higher order software module) to the same conclusions as would the underlying
simulation model.

In the Attrition Simulation the key outcomes tested are:

1. Which side is ahead at combat termination (who wins)?
2. How long before combat termination is achieved?

In the Mission Simulation the key outcomes tested are:

3. How many missions are completed?
4. How many aircraft are destroyed?
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We also use cross validation methods for these tests. For (1) the metric will be the
fraction of times that Blue wins in the 11 models compared to the fraction of times that
Blue wins in each of the 10 comparison data files. For (2) the metric is the absolute
differences in termination time, both averages and standard deviations. For (3) and (4)
we also measure the absolute differences between models and simulations, both averages
and standard deviations.

Simulation Scenarios

Both simulations provide a large number of parameters that can be adjusted to describe a
desired scenario. Rather than trying every combination of every parameter against each
other, we vary parameters individually against a baseline. This seems to be a reasonable
compromise between thoroughness and practicality. For example, using an all
combinations approach with 6 parameters, each having 3 possible values, we would have
to run 3° = 729 different simulation scenarios. Under our approach the example would
result in 6 x 3 — 6 = 12 simulation scenarios. (The minus 6 is due to the baseline
simulation using 1 value from the domain of each parameter.) We actually wind up with
8 scenarios for the Attrition Simulation and 9 scenarios for the Mission Simulation as
described below. Each scenario is run 3 times with 3 different random number seeds.
Baseline values are shown in bold face font.

Attrition Simulation

Kill Probabilities

Scenarios examined include the following probability distributions:
1. uniformly distributed between .01 and .05 (Low)

2. uniformly distributed between .01 and .10  (Mixed)

3. uniformly distributed between .05 and .10 (High)

There are 9 kill probability values in each model.

Inter-Event (firing) Time Distributions

The mean inter-firing time for each weapon system type is uniformly distributed between
10 and 20 time units. The times chosen are somewhat arbitrary. The objective is to
obtain a mixture of lethality factors (see below) through randomization, but to keep
simulation results within the same order of magnitude. Distributions include:

1. LogNormal (std dev. = mean/2)
2. Negative Exponential

There are 9 firing time distributions in the model.
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Starting Force Strengths

This refers to the aggregate Red/Blue force strengths at the beginning of the simulation.
We vary starting force levels because the variability of the force strengths for small units
is much greater than for large units. With a small unit, a few probabilities
simultaneously going in the “wrong” direction can spell the difference between victory
and defeat. Accordingly, relative changes in overall force strengths may vary widely
from one period to the next. The levels are:

1. Low (10 weapons per type, 3 types per side)
2. High (50 weapons per type, 3 types per side)

Note that because of the differences in the firing times and kill probabilities it is usually
the case that to achieve equal starting forces the weapon system vectors on either side
must be different. An initialization routine in the model takes a starting guess for
weapon system quantities (as given above) and then perturbs them to achieve equal initial
force strengths. This also affects the precise weapon quantities that achieve “low” and
“high” force strengths.

Termination Conditions

1. Absolute Decision Rule — Combat termination occurs when the force strength (of
either side) reaches a given threshold value (1/2 the starting strength).

2. Proportional Decision Rule — Combat terminates when the force ratio reaches a
specified threshold value (two to one).

3. AOP Rule — Combat terminates when the force strength crosses either the absolute or
proportional threshold.

4. AAP Rule — Combat terminates when the force strength curve crosses both the
absolute and proportional threshold .

The net result is 8 different scenarios for the Attrition Simulation.
Mission Simulation

Probability of Aircraft Damaged/Destroyed

Each aircraft mission exposes the aircraft to potential damage/destruction. The per
mission probabilities are:

1. .00 (None)
2. .10 (Med)
3. .25 (High)
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Target Matching Time/Number of FAC

Target matching time, the number of forward air controllers (FAC), and the arrival
patterns are arranged so that arrivals do not overwhelm the FAC. A total of 24 aircraft (a
squadron) will arrive during the simulation. Target matching time is described by
uniform or normal probability distributions as follows (parameters in minutes):

Environment FAC time distn. # FAC  Arrival Pattern
heavy jamming Normal(10,2) 1 2/10 minutes
moderate jamming Normal(5,1) 1 2/5 minutes
heavy jamming Normal(10,2) 2 2/5 minutes
moderate jamming Normal(5,1) 2 2/2.5 minutes
no jamming (ATHSIO) Uniform(.5,1.5) 1 2/minute

Discretization of States

To fit the Mission Simulation within our model framework we divided up the queue sizes
and current fuel loads into discrete states. We can vary the level of discretization to
measure the effects on model identification. The following combinations are examined:

Fuel States Queue States

5 4
4 3
3 2

The net result is 9 different simulation scenarios in the Mission Simulation.

1 Automatic Target Handoff System
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Detailed Results

The analysis of results first examines the relative performance of the four algorithms in
identifying the simulation models. The analysis focuses on the cross-validation statistics
for both state matching and model-based decisions. Using the principle of cross-
validation discussed in the Test Plan, we compare the behavior of 11 identified models to
the average behavior of each of the 10 sets of 10 simulations that were not used to
identify the model.

Mission Simulation

For all but the Canonical State Space algorithm, whose behavior is deterministic, the
behavior of the models is determined by averaging across 100 stochastic runs.

State Matching

The first test reports the average absolute difference between model and simulation state
values (quantities of aircraft) over all time periods of the simulation. Recall that in the
Mission Simulation the state vector contains the quanties of aircraft in the following
states: Returning (out of fuel), Damaged/Destroyed, Target Matching, and Combat.
Target Matching is broken down further into “Queue States” x “Fuel States” number of
substates, while Combat is broken down into “Fuel States” number of substates. For
most scenarios, the result was a total of 18 states. The results were then averaged across
all nine scenarios to produce the results displayed in Figure 13 below.

Mission Simulation Cross Validation 1
25 e
2]
S
= 2
>
2
8 15
n
£
2 1
(2]
<
o
g 05
Q
0 . . ‘ B
Canonical | Compartmental | Entropy HMM
{Series1] 2.04 . 08127 ! 0.604 0.763

Figure 13. Average Absolute Differences in State Values - Mission Simulation
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We see that the Maximum Entropy (“Entropy”) technique is superior, with the
Compartmental Model (“Compartmental”) and HMM techniques contending for 2™ and
3™ place. The Canonical State Space (“Canonical”) technique is not a contender in this
test. If we break the analysis down by scenario (not shown): the Compartmental Model
technique was best for all three random seeds of one scenario, the HMM technique was
best for all three random seeds of another scenario, while the Maximum Entropy
technique was best for all other scenarios (21).

The Mission Simulation models tended to have very little variability in state values
across different simulation runs for a given scenario. Thus, the Canonical State Space
technique, being deterministic (with zero variability), was closest in terms of differences
in standard deviations, with an average difference of .250 . The Compartmental Model
technique was second with .359, the Maximum Entropy technique had .432, while the
HMM technique had .452.

Average Behavior

To develop additional insight into model behavior we can compare graphs of aggregated
state values. In Figures 14-17 below we present illustrations of average model behavior
versus average simulation behavior over time for one baseline scenario of the simulation.
The figures display averages of model/simulation outputs over all time periods, therefore
they dampen variability. Nor are they based on cross validation. However, they provide
a quick, visual means of assessing relative algorithm performance. Keep in mind that the
figures show fypical behavior. Behaviors vary slightly with different random number
seeds

The baseline scenario for the Mission Simulation is where:

e mission damage probability = .10
e 2 FAC’s, FAC time ~N(10,2), arrivals every 5 minutes
e Fuel States = 4, Queue States = 3

Figure 14 shows that the Canonical State Space technique is clearly not appropriate for
the Mission Simulation. It performed very poorly in this scenario (and in many others -
although sometimes better than shown in the figure). In Figures 15 and 16 we see that
both the Compartmental Model and HMM techniques seemed to do a fair job of state
matching this scenario of the Mission Simulation. In Figure 17 we can see that the
Maximum Entropy technique appears to have performed very well on this scenario of the
Mission Simulation.
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Figure 14. Canonical State Space- Baseline Scenario
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Figure 16. Maximum Entropy — Baseline Scenario
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Figure 17. HMM - Baseline Scenario
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Model Based Decisions

We next examine the ability of the identified models to provide key decision making
outputs similar to those produced by the underlying simulations. For the Mission
Simulation, the outputs of concern are the number of missions completed and the number
of aircraft damaged/destroyed. For this test, we look at the proportional differences in the
values reported, and average these across all scenarios. Dividing the average absolute
difference in values by the mean simulation values creates the proportion. The results are
shown in Figures 18 and 19 below. We see that the Maximum Entropy technique is best
at predicting the number of missions completed. Its estimates were off the true value by
an average of 9.1%. In individual scenarios (not shown), the difference was almost
always about 9% and the mode! always under-predicts the average simulation value. The
Maximum Entropy technique provided the best predictor in each and every scenario.
Returning to Figure 18, we see that the Compartmental Model and especially the HMM
techniques were significantly worse. The Canonical State Space technique was 100% off,
the reason being that the model has no way of predicting missions completed. The
number of missions completed is a count of the aircraft transitions out of the “Combat”
states, but the Canonical State Space technique can not track discrete movements between
states, it is only capable of predicting total state values. Interestingly, the Maximum
Entropy and Compartmental Model techniques tended to underestimate the number of
missions completed, while the HMM technique tended to overestimate the number of
missions completed.
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Figure 18. Average Proportional Differences in Missions Completed - Mission
Simulation

In Figure 19 we see that the Maximum Entropy technique was also best in predicting the

number of aircraft damaged/destroyed. It was off in its predictions by an average of
18.6%. It was the best predictor in each and every scenario. Again, the Compartmental
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Model and HMM techniques were significantly worse, while the Canonical State Space
technique is “off the charts”. The Maximum Entropy technique provided the best
predictor in each and every scenario. The Maximum Entropy and Compartmental Model
techniques had no clear pattern of under or over estimation of this value, while the HMM
technique tended to overestimate.

Mission Simulation Cross Validation 3
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Figure 19. Average Proportional Differences in Aircraft Damaged/Destroyed -
Mission Simulation
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Attrition Simulation

For the HMM algorithm, the behavior of the models is determined by averaging across
100 stochastic runs. All other algorithms produce a single deterministic model.

State Matching

The first test reports the average absolute difference between model and simulation state
values over all time periods of the simulation. Recall that in the Attrition Simulation the
state values represent the Red/Blue force strengths. The values displayed in Figure 20
below are averages over all time periods of all eight scenarios. We see that the
Compartmental Model and HMM techniques approximately tie for first place, while the
Canonical State Space and Maximum Entropy techniques are “off the charts”. However,
for the latter two techniques it should be noted that the majority of the contribution to the
average was from two or three scenarios, other scenarios had average values much closer
to the former two techniques. Additional explanation is provided in the next section.

Attrition Simulation Cross Validation 1
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Figure 20. Average Absolute Differences in State Values - Attrition Simulation

In individual scenarios (not shown), the Compartmental Model technique was best 8 out
of 24 times, the Canonical State Space technique was best 2 times, and the HMM
technique was best 14 times.

The differences in the standard deviation of state values was smallest for the HMM
technique in every scenario. Overall, the average value of the difference in standard
deviation of differences was 2.202 for the HMM technique, and 3.868 for all other
techniques (being deterministic, they each had standard deviations of 0 within a given
model).
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Average Behavior

As was the case with the Mission Simulation, we can develop additional insight into
model behavior by comparing graphs of aggregated state values, shown in Figures 21-24
below.

The baseline scenario for the Attrition Simulation is the situation where:

kill probabilities are uniformly distributed between .01 and .10

inter-firing time distributions are LogNormal

starting force strengths are “Low”

Combat termination occurs when the force strength (of either side) reaches a given
threshold value (1/2 of the starting strength).

In Figure 21 below, we see that the Canonical State Space technique appears to have
done a fair job of state matching this scenario of the Attrition Simulation. Note that
there is no graph of standard deviations for the Red and Blue models. The standard
deviations of these are actually zero, the reason being that the identified model is
deterministic.

In Figure 22, we see that the Compartmental Model technique appears to have some
predictive value for the Attrition Simulation, while Figure 23 shows that the Maximum
Entropy technique performed poor to fair overall. The main problem with the Maximum
Entropy technique was its tendency to diverge over time from the average simulation
behavior. In some cases the divergence was much more pronounced than shown below.
This is the reason for the “off the charts” difference in state values in Figure 20. A
similar phenomenon would sometimes occur with the Canonical State Space technique.
In Figure 24 we see that the HMM technique appears to have performed very well on this
scenario of the Attrition Simulation.

58




Awerage Force Strength vs. Time
35 T T T T T T T

30 { “\ .

25} TR |
opl| — Blue Models el
- Red Models
15 H - Blue Simulations
Red Simulations
10 1 L 1 Il 1 1 1
0 10 20 30 40 50 60 70 80
Awerage Std. Dev. of Force Strength vs. Time
5 T T T T T T T
4l 4
3+ _
2F N .
14 , :
0_ 1o [ DU _d B [ | ,t-
0 10 20 30 40 50 60 70 80

Figure 21. Canonical State Space — Baseline Scenario
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Figure 22. Compartmental Model —Baseline Scenario
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Model Based Decisions

In these tests we compare the models in their ability to predict two key output values, the
average time to termination (battle end time), and the fraction of times that “Blue” wins
the battle. In this test, we convert the absolute difference in termination times to a
proportion of the average simulation values. For this output, we see in Figure 25 below
that the Maximum Entropy and HMM techniques are approximately tied for first place,
while the Canonical State Space and Compartmental Model techniques are significantly
worse. The Maximum Entropy technique is off by an average of 22.9%. In individual
scenarios (not shown), the Maximum Entropy technique was best 14 out of 24 times, and
the HMM technique was best the other 10. Interestingly, the HMM technique tended to
overestimate the termination time, while the Maximum Entropy technique tended to
underestimate the termination time.
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Figure 25. Average Proportional Difference in Time to Termination - Attrition
Simulation

The final test examines how well the models perform in matching the simulations in
terms of the fraction of wins by “Blue”. In Figure 26 below we again see the HMM
technique doing well, the Maximum Entropy and Compartmental Models techniques
doing significantly worse, and the Canonical State Space technique doing quite poorly (it
is almost a counter-predictor!). In individual scenarios (not shown), the Maximum
Entropy technique was best 6 out of 24 times, and the HMM technique was best the other
18. Here, there was no clear pattern of over or under estimation.

61



Attrition Simulation Cross Validation 3
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Figure 26. Average Difference in Blue Win Fraction

Effectiveness of the Best Techniques

The preceding discussion described the results of a battery of cross-validation tests that
focused on determining the best system identification technique for each simulation
model. In this section, we use a method for determining the absolute, rather than
relative, effectiveness of these best techniques. A key factor in this analysis is the
measurement of random variations in the output of the simulation models. Because of
this variability, no technique can predict the precise simulation outputs, however, any
forecasts should fall within a range determined by the mean output value(s), the expected
variation about this mean, and a given level of statistical confidence. We will present the
results of this analysis on our “best” techniques.

Method

The method is based on statistical sampling as commonly applied to process control (see,
for example, Chase and Aquilano, 1995). A simulation scenario provides the “process”,
and batches of simulation runs provide a set of samples for determining our limits of
variation (“control limits”). We then extract “samples” from the output of our identified
models and compare them to the control limits derived from the simulation data. Sample
model data falling outside the control limits provides evidence that the simulations were
not correctly identified. The tests will be applied to our “decision-making outputs”. For
the Attrition Simulation these are the completion/termination time and the “Blue” win
fraction. For the Mission Simulation these are the number of missions completed and the
number of aircraft destroyed.
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For all but the Blue win fraction we proceed as follows. Let:

n = sample size (number of simulation runs in a sample)
X;= output value from simulation run

m = total number of samples

R; = range of output values in sample j

For each sample, the mean value is given by:

We can then compute upper and lower control limits on both X and R as:

UCLg = X + 4R
LCLy = X - 4R
UCLg = D4R
LCLg = D3R

where A,, D3, and D, can be found in statistical tables as a function of confidence level
and sample size.

Once these control limits have been calculated, we can compare the X and R sample
values (model outputs) to them to determine model effectiveness. Values falling outside
of the limits suggest that the model has not correctly identified the underlying simulation.




To calculate control limits for the Blue win fraction let:

P = the overall blue win fraction from all runs in all samples

Sp= M = standard deviation of the fraction
V n

Then:
UCL,=p+:s,
LCL, =p-:zs,

where z is the number of standard deviations for a specific confidence, typically 3.

Effectiveness Results

The effectiveness analysis was applied to the three baseline scenarios (1 for each of three
seeds) of each simulation. Based on fairly obvious results from the previous section, the
HMM technique was tested against the Attrition Simulation, while the Maximum
Entropy technique was tested against the Mission Simulation. To establish control limits,
the simulations were first run in 25 batches with a sample size of 10 runs per batch. We
used “3 sigma” control limits, which is equivalent to saying that the process should
provide values within these limits 99.7% of the time.

Two system identification types were performed using the three baseline simulation
scenarios, one used 10 simulation runs, while a second used 20 simulation runs. As with
the cross validation, 11 separate identifications were performed (for each type). Once the
models were identified, a sample batch of 10 runs was produced by each of the 11
identified models. The averages and ranges from these sample batches were compared to
the control limits. Values outside of the control limits provide evidence that the
underlying process has not been correctly identified.
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Attrition Simulation

We first examine the completion (termination) times of the Attrition Simulation. Figure
27 below shows the batch averages versus control limits for the model effectiveness test
runs. Some values fall outside of the control limits, less in the 20-run identification than
in the 10-run identification. The former has 4 out of 33 values outside of the limits
while the latter has 10 of 33 values outside of the limits. The simulation average values
for the 3 seeds were (88.3, 119.6, 103.9) while the corresponding model averages were
(97.9, 140.2, 1536.7) for the 10-run identifications, and (97.4, 128.7, 127.7) for the 20-run
1dentifications.
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Figure 27. Control Charts for Average Completion Time, Attrition Simulation,
Baseline Scenario
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We also examine control charts for the range of completion times within a sample.
These are illustrated in Figure 28 below. These control charts measure the variability of
the process. We see that the 20-run identification had no values outside of the control
limits, while the 10-run identification had 4 of 33 values outside of the control limits.
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Figure 28. Control Charts for Range of Completion Times, Attrition Simulation,

Baseline Scenario
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Figure 29 below presents control charts for the fraction of times that “Blue” wins in a
given sample. The 10-run identifications produced 2 values outside of the control limits,
while the 20-run identification produced 1. The simulation average values for the 3
seeds were (.68, .5520, .776) while the corresponding model averages were (.672, .409,
.70) for the 10-run identifications, and (.609, .473, .618) for the 20-run identifications.
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We next examine the number of missions completed in the Mission Simulation. Figure
30 below shows the batch averages versus control limits for the model effectiveness test
runs. In this case, more values fall outside (below) the control limits than inside, in both
the 20-run identifications and 10-run identifications. The simulation average values for
the 3 seeds were (20.8, 20.9, 20.6) while the corresponding model averages were (18.2,

Mission Simulation

18.8, 18.4) for the 10-run identifications, and (18.2, 18.6, 18.5) for the 20-run
identifications.
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We also examine control charts for the range of missions complete within a sample.
These are illustrated in Figure 31 below. These control charts measure the variability of
the process. We see that both the 20-run identification and the 10-run identifications had
most values outside (above) the control limits. In fact, the 20-run identification had more

values outside than the 10-run identification.

Figure 31. Control Charts for Range of Missions Completed, Mission Simulation,
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We next examine the number of aircraft destroyed in the Mission Simulation. Figure 32
below shows the batch averages versus control limits for the model effectiveness test
runs. In this case, all values but 2 fall inside of the control limits, both of these in 10-run
identifications. The simulation average values for the 3 seeds were (2.4, 2.4, 2.4) while
the corresponding model averages were (2.2, 1.9, 2.4) for the 10-run identifications, and
(2.2,2.1, 2.3) for the 20-run identifications.
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Figure 32. Control Charts for Average Aircraft Destroyed, Mission Simulation,
Baseline Scenario
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Last, we examine control charts for the range of aircraft destroyed within a sample.
These are illustrated in Figure 33 below. We see that both the 20-run identification and
the 10-run identifications had all values inside the control limits.
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Algorithm Performance Considerations

This section compares the algorithms in terms of speed, memory usage, and robustness.
The implementation platform was a Windows NT Workstation with a 433 MHz
processor and 256 MB of RAM. The algorithms were implemented in MATLAB,
Version 5.3, with the exception of two key subroutines (described below), that were
implemented as C dynamic link libraries. The Maximum Entropy algorithm requires an
add-in package to MATLAB, known as the Optimization Toolbox (Coleman, et. al.;
1999). Note that MATLAB is an interpreted language and was used in that mode during
this research. MATLAB software can also be compiled into C and C++ code via
MATLAB compiler software and libraries, resulting in programs that run much faster
than the original MATLAB code. Run times provided below result from a single
identification, whereas each cross-validation test run required 110 identifications (there
were 204 test runs — one for each scenario/seed combination). The RAM requirements
discussed below are in terms of what is needed in addition to the RAM taken up by the
operating system and MATLAB software (about 60 MB).

Canonical State Space

This algorithm operates relatively fast (less than a second), and does not require a lot of
memory (perhaps 1 — 3 MB depending on the simulation and the scenario). Its operation
was simplified by the fact that the states we attempt to identify are fully observable, thus
the structural indices need not be calculated. An occasional numerical problem occurs
where the estimation matrix, “S”, is singular. As a practical work-around, the matrix was
perturbed to non-singular form without significant degradation of results.

Compartmental

This algorithm also operates relatively fast (less than a second), and does not require a lot
of memory (perhaps 1-5 MB depending on the simulation and the scenario). However, a
robust implementation requires attention to potential numerical difficulties. First, the
technique involves the computation of terms of the form: e™ where A is a transition rate
matrix. These can be computed via eigenvalue decomposition methods, however, the
potential exists for the decomposition to not exist or to involve complex numbers (we
experienced both of these situations in early trials). The built in MATLAB function for
this type of exponential calculation handles these situations automatically. Similarly, the
MATLAB matrix convolution function performs calculations needed to find derivatives,
thus sidestepping the need to deal with potentially singular decomposition matrices.
These MATLAB functions were substituted for our earlier, more fundamental code. A
final difficulty can result when the variance-covariance matrix, “V”, is singular. As a
practical work-around, the matrix was perturbed to non-singular form without significant
degradation of results. Coding the variance-covariance matrix building subroutine in C
averted a computational bottleneck.

72




Maximum Entropy

This algorithm operates relatively slow, and sometimes requires large amounts of
memory; even with “sparse” versions of the constraint matrices and the “large-scale”
mode of the optimization function. In the Attrition Simulation, about 40 MB of
additional RAM was needed and the time required for a single identification ranged from
about 10 seconds to about 3 minutes. In the Mission Simulation, up to 200 MB of
additional RAM was needed and the identification time ranged from about 30 seconds to
about 8 minutes. This slowness results partly from the relatively large constraint matrix
needed to find the parameter values. In the baseline scenario of the Attrition Simulation,
the matrices typically had around 600 rows (constraints) and 1300 columns (variables).
In the Mission Simulation we could typically have about 1800 rows and 5500 columns
for the baseline scenario. Another reason for slow speed was that in both simulations,
the nonlinear programming subroutine would sometimes converge very slowly. Asa
practical work-around, an iteration limit of 100 was employed without significant
degradation of results. In the case of the Attrition Simulation, the algorithm would also
sometimes “lock up” while performing the linear programming subroutine that calculates
prior estimates. In these instances, what normally required a few seconds might take up
to 30 minutes, and produce an infeasible solution (these were eliminated from the
parameter averages). This problem has been isolated to scenarios where a few
simulations were significantly longer than the average within an identification group,
leading to an unusually large constraint matrix (e.g. 3000 x 3000). The behavior of this
algorithm is strongly influenced by the choice of optimization software. Particularly with
nonlinear programming, there can be large differences in efficiency and solution quality
between packages. In this study, we used MATLAB’s Optimization Toolbox add-on
package. A compiled version would likely run much faster. Systems View has also had
some previous experience with a C-based mathematical programming package known as
LOQO (Vanderbei, 1999), which seems to converge very quickly on these sorts of
problems. However, for this high-level comparison, the acquisition and integration costs
of this package were not warranted, but might be for a more in depth study that focused
on the Maximum Entropy technique.

HMM

The worst-case performance of this algorithm increases with N°T and memory
requirements increase with N°, where N is the number of states, and T is the number of
time periods. We developed an optimized C code version of the HMM computational
subroutine that exploits the sparsity (zero elements) typically found in the state transition
matrix. This allows us to handle state transition matrices of up to 400 x 400 elements
(N=400) and a T of about 50, without major difficulty. The Mission Simulation had no
more than 26 states, so HMM was very fast (milliseconds) and required negligible
memory. In the Attrition Simulation we set N=256, representing 16 subdivisions of Red
and Blue output values, and T ranged from about 50 to 150, depending upon the scenario.
The algorithm operated on the order of 10 to 90 seconds per identification. Memory
requirements were small, a marginal increase of 6 MB or so for the HMM subroutine.
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Results Summary and Conclusions
Identification Techniques

The results clearly demonstrated that the Hidden Markov Model (HMM) technique was
superior at identifying the Attrition Simulation (See Table 2 below). It was slightly
better than the next best technique (Compartmental Models) at matching states, second
best at predicting completion/termination times (Maximum Entropy was best), and
superior in predicting the Blue win fraction. This conclusion is strengthened by the fact
that the Compartmental Models technique was worst at predicting completion time and
second worst in predicting the Blue win fraction. Similarly, the Maximum Entropy
technique was worst in matching states (it was “off the charts”). Only HMM excelled in

all tests.

Technique State Comp. Time Blue Win
(proportion) Fraction
Canonical State 518.506 474 Sl
Space
Compartmental 4.837 568 333
Model
Maximum Entropy | 1755.3 229 .29
Hidden Markov 4.476 251 164
Model (HMM)*

Table 2. Attrition Simulation — Average Errors

It is equally clear that the Maximum Entropy technique was superior at identifying the
Mission Simulation (See Table 3 below). It was slightly better than the next best
technique (HMM) at matching states, superior in predicting the number of missions
completed, and slightly better than the next best technique (Compartmental Models) in
predicting the number of aircraft destroyed. While the HMM technique did very well in
the Attrition Simulation, it was very poor at predicting missions completed and aircraft

destroyed in the Mission Simulation.

Technique State Missions Aircraft
Completed Destroyed
(proportion) | (proportion)
Canonical State 2.04 1 8.630
Space
Compartmental 8127 303 255
Model
Maximum Entropy* | .604 091 .186
Hidden Markov 763 .632 635
Model (HMM)

Table 3. Mission Simulation — Average Errors
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It was initially surprising that, while the HMM technique did very well with the Attrition
Simulation , it did poorly on the Mission Simulation. The same is true in reverse for the
Maximum Entropy technique. After all, both produce a stochastic identified model. We
believe there are two main reasons for this.

The first is that the Mission Simulation had inputs (aircraft), while the Attrition
Simulation did not."" The only way that the HMM technique can incorporate entities
entering different states of the model is through the prior distribution of the state, qo. The
prior distribution is a model input that we calculated off-line via historical frequencies,
conditioned on the number of aircraft already in the model. The Maximum Entropy
technique handles inputs directly, via the input transition matrix, B. Calculation of the
input transition matrix is performed simultaneously with the calculation of the state
transition matrix, allowing for joint optimization. This leads us to a conclusion that
simulations with inputs are best identified by techniques that include the input transitions
in the identification process.

The second reason is that in the Attrition Simulation, the HMM technique operated upon
aggregated force strengths while the Maximum Entropy technique operated upon force
strength by weapon system type. The force strengths of individual weapon system types
had a lot of variability. In addition, they could start out large, and then go to zero,
remaining that way for extended periods until termination conditions were reached. This
creates the potential for scaling problems, a frequent difficulty with mathematical
programming algorithms. This leads us to a conclusion that the Maximum Entropy
technique is not suitable for models where state values have extreme amounts of
variability and/or scale differences.

Overall Effectiveness

The effectiveness testing on these two best techniques provided mostly positive results.
In the case of the HMM/Attrition algorithm, we saw that both completion times and the
winning side were predicted fairly well. Specifically, in the more refined models (20-run
identifications) only 4 of 33 average completion time values fell outside the control
limits, while none of the sample ranges fell outside of the control limits. Only 1 of 33
values fell outside of the control limits for the blue win fraction.

In the case of the Entropy/Mission algorithm the results were promising, but not as good
as with the HMM/Attrition algorithm. The main problem was that in predicting the
number of missions completed, the model consistently underestimated the simulations by
about 10%. This result was true in both the 10-run and 20-run identifications. In
addition, the ranges of values within a sample were consistently too high. On the other
hand, the Entropy/Mission algorithm did a good job in predicting the number of aircraft

I Except of course when required for the Canonical State Space technique.
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destroyed. In the 20-run identifications, no values were outside of the control limits for
either the average value or the range of values within a sample.

Performance

The HMM algorithm, as implemented in this research, is relatively fast and space
efficient. One caveat is that the run-time performance could degrade in situations where
there are more than about 400 states (with current hardware) and/or the state transition

matrix is dense.

The Maximum Entropy algorithm, as implemented in this research, is relatively slow and
requires relatively large amounts of memory. However, the key driver is the
mathematical programming subroutines. Obviously, efficient, compiled C code
implementations would be much faster than our MATLAB version. It is not clear how
much more space efficient other implementations might be.
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Discussion

This research has demonstrated the viability of abstracting stochastic simulation models
via state-based system identification techniques. It was significant that system
identification techniques resulting in stochastic models were best at identifying stochastic
simulations. The results did vary by simulation model, scenario, and identification
technique in that no one technique is universally superior for all simulations. Even the
“worst” methods would sometimes provide the best estimate in a given scenario.
However, the Hidden Markov Model (HMM) technique and Maximum Entropy
technique showed the most promise. The results suggest that a hybrid method that
combines the results of several identification techniques would likely provide improved
estimates. The statistical technique of classification trees is one approach for combining
the results of identified models.

Choice of an appropriate state-space analogue to the underlying simulation 1s important.
The number of possible states or observations can not be too large, both for
computational performance, and for numerical tractability. The state space must be kept
reasonably small since the run time of most identification techniques increases in a
polynomial fashion with the number of states. State abstraction/aggregation prior to
identification may be critical for success. For example, in the Attrition Simulation we
performed two levels of abstraction. First, we converted weapon system counts, lethality,
and vulnerability to force strengths. Second, (in the HMM identification) we aggregated
the force strengths by weapon system type to a single value per side. In the Mission
Simulation, we needed a state space that would capture the different activities of the
individual aircraft (targeting, combat, damaged/destroyed, and returning), their current
fuel level, as well as the queuing effect at the forward air controller. We used an
approach of discretizing the fuel levels (a continuous to discrete abstraction) and
aggregating the possible queue sizes. Without these abstractions the number of possible
states in either simulation would have been astronomical.

The modeled states must also be chosen so that counts of either state populations or state
transitions suffice to provide outputs analogous to those of the underlying simulation.
For example, in the stochastic identifications of the Mission Simulation, the number of
missions completed was determined by observing the number of entity transitions
between “combat” states and states other than “destroyed”. The number of aircraft
destroyed was a simple count of a state population. In the HMM identifications of the
Attrition Simulation, each state corresponded to a pair of Red/Blue force strengths. We
could determine termination time by capturing the time period that the identified model
entered one of a set of designated terminal states, while the winner was found by
comparing the Red/Blue force strength pair at termination to see which was greater. All
of this points to the fact that the purpose of the model must drive its structure, scope, and
resolution.
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Appendix A - Attrition Simulation: Methods for Calculating Force
Strengths, Initial Force Levels, and Fire Allocation

Force Strength Calculation

A force strength , S, measures the relative strength of a collection of weapon systems. It
can be computed as follows:

N°® = the number of different weapon types on side s; s € {R, B}

V;® = the weapon score for weapon systemionsides;i=123,.. N° s € {R, B}
W,* = the number of weapons of type i onside s;i=1,2,3, . N°,s € {R, B}

Then: S°=

NE P
ZVfo} ;  se{RB} [A.1]
i=1

where p may vary according to the force scoring assumptions. Typical values are 1 or .
The force ratios are then determined by:

_NB I,
AL
B i=1
=S en = e [A2]
WA

The terms, V;', are functions of the known kill probabilities, inter-firing times, and the
fire allocation assumptions. To calculate, let:

E;° = the average number of engagements per time period made by a weapon of type i on
side s (against all enemy weapons). Note that E;’ is the inverse of the mean of the

interfiring time distribution for weapon system #; i =1,2,3, .. N°, s € {R, B}.

P;;® = the probability of kill per engagement by a weapon of type i on side s when that
weapon is engaging an enemy of typej; 1=1,23,.. N° ,j=123, .. N*,s e {R,B).

A;® = the allocation of fire from a weapon of type i on side s when that weapon is
engaging an enemy of typej;1=1,2.3,.. N° ,j=123, .. N°.,se {R, B}. Note that

Z;:A,j =1

81




K; = the expected rate at which weapon systems of type / on side s kill weapon systems
ofenemy type;,i=123,.. N*,j=123, .. N°.se {R, B} This is equivalent to

A variety of scoring equations based on these quantities has been proposed. The best for
our purposes appears to be the DYNPOT (dynamic potential) method, which considers
both lethality and vulnerability in both the short and long run time frames. An earlier and
more well known method, Anti-Potential Potential (APP), has been used in various ways
in a number of military simulations such as IDAGAM, INBATIM, JCS FPM, and
IDAPLAN, which are all dynamic theatre-level models of ground and air combat.
However, APP has the flaws that 1) it addresses lethality but ignores the relative
vulnerability of weapon systems, and 2) it computes an instantaneous score for a weapon,
but not a long run score. The DYNPOT technique addresses these shortfalls, resulting in
a set of equations for the weapon scores (V;’ 's) as follows:

NY ,

XKV

BV = i;‘——— i=123,. N ,se {R,B} [A.3]
K;,i

j=

where B is a coefficient that is constant across all weapon systems and is calculated along
with the V;*'s. The denominator terms, X , are defined by:

WiK;
: y ) ! . ~ : -~ '
Kj= /W;, Wi>0 ;1= 1,2.3,.. N* ,j=1,23,.. N*,s € {R, B} [A4]

0, otherwise

which can be interpreted as the rate at which weapon systems of type j on side s'is being
killed by all weapons of type i on side s.

To solve for the V;® values, we set one of them to 1.0, and assuming that we know the
K, we can solve a set of equations'” for B and the remaining V;*.

When initializing our attrition simulation model we will have a known desired force
strength ratio, but will not know the W,*s that along with the K;;”s will achieve that ratio.
These can be determined via an iterative algorithm as shown below.

12 Following the guidance of Anderson and Miercort (1995) we set 8 to 1.0 and solve the
NR + NP linear equations for N® + NB—1 unknowns.
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Algorithm for Calculating Initial W;

0. Select initial values for W>0,i=1273,.. N° s € {R, B}, set V,°=1; select p, and
the desired force strength ratio r,”; select € >0 = the maximum deviation from I,
Solve equations [A.4] and then [A.3] for the Vs and B.

Solve equation [A.2] for the force strength ratio, r,,.

If |rp0 - .| < £ then STOP, otherwise go to step 4.

If (rpo - 1,) < 0 (force strength ratio is too high) set s = R; otherwise (force strength
ratio is too low) set s = B and find:

Sl e

Vr;;(s)=—ari; i=123,.. N°
oW
i Vrl(s) S Vri(s) i =1,23,..N°  (see note)
5. Set W’ =W’ +1and GO TO Step 1.

Note: The inequality, <, is used to distribute the increases among the various weapon
system types. The inequality, >, would be faster, but would cause all the increases to
occur in a single weapon system type.

Note that, at each iteration, the side that is “too weak” with respect to the desired force
strength ratio has the population of one weapon system type increased by 1. We do this,
rather than decrease weapons on the “too strong” side, to ensure convergence and to
avoid numerical problems resulting from weapon system populations possibly going to
Zero.

Fire Allocation Methodology

In general, fire allocation is a function of the current force levels, the average rates of
fire, the kill probabilities, and any additional externally provided allocation parameters,
A (Anderson and Miercort, 1989). That is:

0 if weapon type i engages no targets

5 S > N‘ 1
4 =F;(W,E,P,A)where 3 4 {1 sthorwise
There are two major types of fire allocation rules within this framework — strict priorities,
and fractional allocations. Strict priority methods select a single target weapon system at
each firing event, while fractional allocation methods distribute the fire proportionally
(probabilistically, in our stochastic model) among targets at each firing event. The
simplest fractional allocation method is one in which the fractions are fixed throughout
the course of the model (except when the quantity of an opposing weapon system type
becomes 0, in which case a valid reallocation is performed). The problem with this
technique is that the target choice is then independent of the number of targets of each
type present, which is clearly unrealistic. Strict priority rules also have problems related

&3




to their inability to incorporate the random effects of unmodeled variables such as enemy
detection, local terrain features, or proximity. We use a fractional allocation method that
is dependent on current model conditions. The method provides values proportional to
the number of enemy weapons:

c;

N" s S~
Z =l C'JI/V]

The C;’ terms can be provided externally" or calculated from other model parameters.
We use a form of the latter strategy that exploits our knowledge of E and P. Namely:

s
j

C;=EPEP,

&
/A ]

which tends to focus fire on targets that are most effective by weapons which are the
most effective against them.
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'® This general approach is used in combat simulations such as IDAGAM, INBATIM,
TACWAR, JCS FPM, and IDAPLAN.
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